|
|
|
package main
|
|
|
|
|
|
|
|
// math.go: mathematical routines
|
|
|
|
|
|
|
|
import (
|
|
|
|
"math"
|
|
|
|
)
|
|
|
|
|
|
|
|
func powInt(x, y int) int {
|
|
|
|
return int(math.Pow(float64(x), float64(y)))
|
|
|
|
}
|
|
|
|
|
|
|
|
func egcd(a, b bigint) (g, x, y bigint) {
|
|
|
|
if a.Empty() {
|
|
|
|
return b, NewBigint(0), NewBigint(1)
|
|
|
|
} else {
|
|
|
|
g, y, x = egcd(b.Mod(a), a)
|
|
|
|
return g, x.Sub(b.Div(a).Mul(y)), y
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func modinv(a, p bigint) bigint {
|
|
|
|
if a.LtInt(0) {
|
|
|
|
a = a.Mod(p)
|
|
|
|
}
|
|
|
|
|
|
|
|
g, x, _ := egcd(a, p)
|
|
|
|
if g.NeInt(1) {
|
|
|
|
panic("modular inverse does not exist")
|
|
|
|
} else {
|
|
|
|
return x.Mod(p)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func leftmostBit(x bigint) bigint {
|
|
|
|
if x.LteInt(0) {
|
|
|
|
panic("x must be greater than 0")
|
|
|
|
}
|
|
|
|
|
|
|
|
res := NewBigint(1)
|
|
|
|
for res.Lte(x) {
|
|
|
|
res = res.MulInt(2)
|
|
|
|
}
|
|
|
|
|
|
|
|
return res.DivInt(2)
|
|
|
|
}
|
|
|
|
|
|
|
|
func naf(mult bigint) []bigint {
|
|
|
|
ret := make([]bigint, 0)
|
|
|
|
|
|
|
|
for mult.GtInt(0) {
|
|
|
|
if mult.ModInt(2).GtInt(0) {
|
|
|
|
nd := mult.ModInt(4)
|
|
|
|
if nd.GteInt(2) {
|
|
|
|
nd = nd.SubInt(4)
|
|
|
|
}
|
|
|
|
ret = append(ret, nd)
|
|
|
|
mult = mult.Sub(nd)
|
|
|
|
} else {
|
|
|
|
ret = append(ret, NewBigint(0))
|
|
|
|
}
|
|
|
|
|
|
|
|
mult = mult.DivInt(2)
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret
|
|
|
|
}
|
|
|
|
|
|
|
|
func legendreSymbol(a, p bigint) bigint {
|
|
|
|
l := a.ModExp(p.SubInt(1).DivInt(2), p)
|
|
|
|
if l.Eq(p.SubInt(1)) {
|
|
|
|
return NewBigint(-1)
|
|
|
|
} else {
|
|
|
|
return l
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func primeModSqrt(a, p bigint) (bigint, bigint) {
|
|
|
|
a = a.Mod(p)
|
|
|
|
|
|
|
|
if a.EqInt(0) {
|
|
|
|
return NewBigint(0), NewEmptyBigint()
|
|
|
|
}
|
|
|
|
|
|
|
|
if p.EqInt(2) {
|
|
|
|
return a, NewEmptyBigint()
|
|
|
|
}
|
|
|
|
|
|
|
|
if legendreSymbol(a, p).NeInt(1) {
|
|
|
|
return NewEmptyBigint(), NewEmptyBigint()
|
|
|
|
}
|
|
|
|
|
|
|
|
if p.ModInt(4).EqInt(3) {
|
|
|
|
x := a.ModExp(p.AddInt(1).DivInt(4), p)
|
|
|
|
return x, p.Sub(x)
|
|
|
|
}
|
|
|
|
|
|
|
|
q, s := p.SubInt(1), 0
|
|
|
|
for q.ModInt(2).EqInt(0) {
|
|
|
|
s++
|
|
|
|
q = q.DivInt(2)
|
|
|
|
}
|
|
|
|
|
|
|
|
z := NewBigint(1)
|
|
|
|
for legendreSymbol(z, p).NeInt(-1) {
|
|
|
|
z = z.AddInt(1)
|
|
|
|
}
|
|
|
|
|
|
|
|
c := z.ModExp(q, p)
|
|
|
|
x := a.ModExp(q.AddInt(1).DivInt(2), p)
|
|
|
|
t := a.ModExp(q, p)
|
|
|
|
m := s
|
|
|
|
|
|
|
|
for t.NeInt(1) {
|
|
|
|
i, e := 0, NewBigint(2)
|
|
|
|
if m > 0 {
|
|
|
|
for i = 1; i < m; i++ {
|
|
|
|
if t.ModExp(e, p).EqInt(1) {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
e = e.MulInt(2)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
b := c.ModExp(NewBigint(powInt(2, m-i-1)), p)
|
|
|
|
x = x.Mul(b).Mod(p)
|
|
|
|
t = t.Mul(b).Mul(b).Mod(p)
|
|
|
|
c = b.Mul(b).Mod(p)
|
|
|
|
m = i
|
|
|
|
}
|
|
|
|
|
|
|
|
return x, p.Sub(x)
|
|
|
|
}
|